.228075=4((10)^-05)x+0.013

Simple and best practice solution for .228075=4((10)^-05)x+0.013 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .228075=4((10)^-05)x+0.013 equation:



.228075=4((10)^-05)x+0.013
We move all terms to the left:
.228075-(4((10)^-05)x+0.013)=0
We add all the numbers together, and all the variables
-(4(10^-05)x+0.013)+0.228075=0
We calculate terms in parentheses: -(4(10^-05)x+0.013), so:
4(10^-05)x+0.013
We multiply parentheses
40x^2-20x+0.013
Back to the equation:
-(40x^2-20x+0.013)
We get rid of parentheses
-40x^2+20x-0.013+0.228075=0
We add all the numbers together, and all the variables
-40x^2+20x+0.215075=0
a = -40; b = 20; c = +0.215075;
Δ = b2-4ac
Δ = 202-4·(-40)·0.215075
Δ = 434.412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-\sqrt{434.412}}{2*-40}=\frac{-20-\sqrt{434.412}}{-80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+\sqrt{434.412}}{2*-40}=\frac{-20+\sqrt{434.412}}{-80} $

See similar equations:

| 15-3m=2 | | .228075=4(10)^-05x+0.013 | | 5(x+2)^2-450=0 | | 77=2x+1 | | -12=k-2-4 | | 77=2x+ | | .228075=4E-05x+0.013 | | q^2+2q=63 | | Y=4x+2;(8,36) | | -10x+5=105 | | 5x+1=2x–8 | | 3x-(24)=2x+1 | | 0.25x+0.75x=0.8x+2.5 | | 79-22=80-n.n= | | 16-8x=-72 | | 81=-9(k+3) | | 48-8=60-n.n= | | 47-25=40-n.n= | | 16-2n=-25 | | −8r=64 | | 2x+1=193 | | 24=2w=2L | | X+x(x2)+x+X(x2)=132 | | 50-32=60-n.n= | | 5w=6=10 | | 14=-(p-17) | | 4x-3(x+2)=9-5x | | 4(-7+x)=4 | | 10w=7400w= | | 3x-(2x+5)=3x-5 | | (3x-5)(x+1)=-6 | | -24-x=-3x+36 |

Equations solver categories